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In the interior of an extended liquid a cyclic cavitation process can be set up by a 
focused acoustic wave field. A cluster of supercritical cavities is developed when the 
tensile strength of the liquid is exceeded. This occurs almost simultaneously in a 
confined region around the focal point where the sound speed rapidly vanishes when 
the cavities approach their critical size. As a consequence, the inner boundary 
condition for the acoustic field, carried by the single-phase liquid, changes from total 
reflection a t  the focal point without phase shift, as a t  a rigid wall, to reflection a t  the 
boundary of the cluster, which now forms a low-pressure two-phase kernel embedded 
in the single-phase liquid. The cluster is compliant to expansion waves but essentially 
rigid to compression waves. As soon as the cluster is formed its further development 
is determined jointly by the sound field and by the far field pressure of the liquid. The 
former first makes the cavities in the cluster grow and then contributes to its 
collapse, while the latter tends to bring about its collapse from the moment of cluster 
formation. 

1. Introduction 
In a focused acoustic field the pressure oscillations attain their maximum 

amplitude at the focal point, and at sufficient field intensity tensile stresses can be 
set up. These are sufficient to cause cavitation in an initially single-phase liquid. In  
general a cluster of small cavities is formed and collapses in each cycle (Ellis 1956; 
Plesset & Ellis 1955). It appears that the individual cavities in the cluster are 
nucleated simultaneously within a confined region, and a t  20 kHz the inter-cavity 
distance is about 0.3 mm, and they then grow to a diameter typically of the order of 
0.1 mm. The growth phase is followed by a cluster collapse phase in which the 
cavities collapse successively from the boundary of the cluster towards the cluster 
centre (Hansson & March 1980; March 1980, 1982, 1987a, b) .  

The cluster formation was previously discussed (March 1986) assuming that near 
the focal point a two-phase quasi-equilibrium replaces wave propagation in the 
single-phase liquid, when cavities are nucleated in the liquid by rupture a t  the 
surface of a distribution of hydrophobic solid nuclei. The pressure a t  cavity 
nucleation was related to the size and form of these nuclei. A cavitation number for 
acoustic cavitation was found and the theory allows calculation of an upper limit of 
the cluster radius 4. However, the calculated radii were about an order of magnitude 
larger than observed experimentally, which indicates that the nucleation criterion 
used is not the limiting one. 

Thus, a reconsideration of the conditions of cavity nucleation is needed. In the 
present paper the theory is revised and cavity nucleation is defined in relation to the 
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vanishing of the sonic speed in a liquid containing cavitation nuclei which approach 
their critical size. The definition is independent of whether the basic nuclei are 
gaseous or solid, but gas nuclei are chosen as the basis of calculation. The approach 
predicts simultaneous cavity nucleation within a region around the focal point, as 
observed in experiments, and explains the suppression of cavities outside this 
region. 

In acoustically generated cavity clusters the inter-cavity distance is observed to be 
typically of the order of a few hundred pm, and consequently, a nuclei distribution 
of a t  least such a number density must be present during the cyclic cavitation 
process. I t  is pertinent to ask if these nuclei are the ones characterizing the tensile 
strength of the liquid in general. Greenspan & Tschiegg (1967) showed that the 
tensile strength of a liquid, defined by the stress at which the first cavitation event 
occurs in an acoustic field, is connected to the presence of solid nuclei. The tensile 
strength, which is about 1 bar in unfiltered water, increases if the maximum size of 
the solid nuclei in the water is reduced by filtration, until a t  nuclei diameters below 
0.2 pm a tensile strength of about 200 bars is obtained. At the first cavitation event 
probably only a single or at most a few solid nuclei in the focal region of the sound 
field cause cavitation. However, it is likely that diffusion of gas into these cavities 
during their life-time leads to the formation of gaseous nuclei, and that their number 
is greatly increased in the following cavitation cycles owing to splitting of the gas 
content a t  collapse of the cavities. Further, these nuclei reduce the tensile strength 
of the liquid. 

In experiments with a cavitation tube i t  was observed (I. Hansson, V. Kedrinskii 
& K. A. Msrch 1981, unpublished results) that the first stress pulse applied to tap 
water which has been a t  rest for about 2 days produces a tensile stress of about 1 bar 
while a successive pulse, if applied within a few hours, gives a tensile strength close 
to zero. The first stress pulse may be due to rupture at solid nuclei, which then leads 
to the formation of gas nuclei. It is expected, therefore, that a continuously repeated 
acoustic cavitation process leads to the formation of a cluster of gaseous nuclei in and 
around the focal region, and that here the tensile strength of the liquid is less than 
in the undisturbed liquid where the tensile strength is governed by solid nuclei. 

In  the following we assume that gas nuclei, all of the same size, are present inside 
as well as around the cluster region. However, it is likely that the nuclei shrink as the 
distance from the cluster increases, which of course strongly affects the conditions of 
cavitation nucleation in this zone. 

2. The formation of the cavity cluster 
The simplest form of a cavity cluster which can be generated and collapsed 

repeatedly is a spherical cluster produced by a converging spherical acoustic wave. 
Experimentally such a wave field was set up by Greenspan & Tschiegg (1967) and 
used for their investigations of the tensile strength of liquids by driving the sound 
field in a spherical bottle filled with water at its fundamental radial resonance 
frequency. Ellis (1956) studied an approximately similar cavitation process by high- 
speed photography using a cylindrical beaker filled with water and driven a t  
cylindrical and axial resonance, so that a sound field comparable to a hemispherical 
wave was formed a t  the bottom of the beaker. Essentially hemispherical cavity 
clusters were generated and collapsed here. (A mirror cluster and wave field 
completes the analogy to the spherical case.) 

To analyse the cluster formation we consider a single-phase liquid a t  equilibrium 
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pressure p ,  in which a convergent, spherical acoustic wave field is propagated and 
totally reflected without phase shift a t  the focal point, so that a standing wave is 
generated. 

The wave field has to satisfy the wave equation 

in which q5 is the velocity potential and r and t are the radius and time, respectively, 
while co is the sound speed of the liquid. It has solutions 

r$ = f(c,t-r)+g(c,t+r), (2) 

in which f represents the diverging and g the converging waves. For a converging 
wave of angular frequency o = kc,, 

g = Ccos(wt+kr), (3) 

we find the velocity perturbation 

Here the value of C is related to the acoustic power W of the wave by 

(4) 

where po is the density of the single-phase liquid. 

converging wave at  r = 0 without phase shift as a t  a rigid wall 
By analogy we find for a diverging wave, resulting from total reflection of the 

f = -Ccos(wt-kr) 
Its velocity perturbation 

Ck C 
f r  r2 

A ? L ~ ~  = (-g) = -sin(wt-kr)--ccos(wt--ler), 

and the two waves combine to give a standing wave 

sin wt , 
sin kr A u = A u ~ + A u , = -  l (  - 2w ):(ooskr-- kr 

r npoc, 

which satisfies the inner boundary condition, that in a single-phase liquid Au = 0 for 
r = 0. The pressure perturbations are 

and 
C 

f r  
= p,-osin(wt-kr), 

from which we obtain the pressure perturbation in the standing wave 

1 2p,c, f 

Ap = Apf+Apg = -- r ( - 7'sinkrcoswt. 

3 



60 K .  A .  Mwch 

The energy of the sound field continuously changes between kinetic energy and 
potential energy, the latter alternating between compressive and tensile stress. 

A perfectly pure liquid can resist extremely large tensile stresses, but normal 
liquids contain gaseous and/or solid nuclei which give it a limited tensile strength, 
typically of the order of 0.1-1 bar. If the liquid is strained, cavities grow from the 
nuclei and pass a critical size a t  which the minimum equilibrium pressure in the 
liquid is obtained. This critical pressure pcrit is determined by the surface tension 
constant CT of the liquid and by the vapour and gas pressures p i  and pk in the cavities 
and for solid nuclei also by their dimensions and surface properties. When the 
medium is strained beyond the critical condition the cavities grow, partly due to the 
straining itself, partly due to the relaxation of the tensile stress in the liquid phase. 
In  this regime dp/dp<O for the medium, and a speed of propagation of low- 
frequency disturbances in the cavitating medium is not defined. 

As a consequence, the above-mentioned field of standing waves can exist only if 
po + Ap > pcrit - p i  during the complete cycle of the acoustic field. Actually, cavity 
growth changes the single-phase character of the liquid when the pressure has 
dropped to a cavity nucleation pressure p ,  slightly higher than pCrit. This is because 
the nuclei yield significantly to the tensile stress applied, and as a consequence, the 
conversion of kinetic energy to potential energy (tensile stress) in the nucleation 
region is hampered, i.e. the inner boundary condition for the convergent wave 
changes. In figure 1 the pressure distribution around the focal point based on (1  1) is 
shown a t  different moments of time. The curve obtained for coswt = - 1 gives the 
highest compressive stress in the focal region. The corresponding curve of tensile 
stress for coswt = 1 does not develop if cavitation nucleation occurs. Curve a shows 
the pressure distribution according to  ( 1  1) when the nucleation pressure p ,  is reached 
at  the focal point, and the nuclei begin to influence the pressure field significantly. 
As time increases the locus of p = p ,  moves in a radial direction, first a t  infinite 
speed, then decreasing to sonic speed a t  a radius r =R, <aax, where kax 
corresponds to p = p ,  for coswt = 1. Reflection of the converging wave a t  the 
boundary of the developing cavity cluster changes the pressure field and prevents the 
development of nucleation pressure for r > R,. The influence of the cavitation nuclei 
is illustrated by curve b which shows that the pressure development in the focal 
region is restricted, and it indicates that the critical condition is obtained first at  
some distance from the focal point (or simultaneously throughout the focal 
region). 

If we assume that the liquid contains gas nuclei of radius a their angular resonance 
frequency wB (Plesset & Prosperetti 1977) is 

in which K is the polytropic exponent of the gas and 

p i  = GT/a3, 

where G is a constant dependent on the gas content and T is the absolute 
temperature. For gas bubbles a t  equilibrium a t  the pressure p in the liquid (Knapp, 
Daily & Hammitt 1970). 

p-p:  = GT/a3-2a/a ,  (14) 
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FIGURE 1. The maximum and minimum pressures (as obtained for coswt = - 1 and coswt = 1) 
produced by a focused acoustic field ZIS. the distance r from the focal point. Curve a, pressure 
distribution at  the limit of single-phase condition; curve b ,  pressure distribution a t  a time 
t x t,(R,), after cavity nucleation and when critical conditions are approached in the central 
region. 

from which the critical radius acrit and pressure pCrit of the nuclei are found for 
dplda = 0 

and the corresponding gas pressure in the bubble is 

For example, if in water at T = 293 K, where w = 0.0728 N/m, the gas bubbles 
have a critical radius acrit = 3 pm, then p,,,,-p; = -32.4 kPa and = 16.2 
kPa. The radius shrinks to a = 1.27 pm a t  po-p :  = lo5 Pa with p;  = 2.14 x lo5 Pa 
and from (12) we obtain wB = 18 x lo6 s-l for K = 1 ,  which applies for realistic w ,  i.e. 
the bubble oscillations are isothermal (Plesset & Prosperetti 1977). 

When the pressure p in the liquid is reduced wB is reduced, and wB = 0 at p = perit, 
but wB remains high until very close to the critical condition. It turns out that a t  

3-2 
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a frequency f = w / 2 ~  = 20 kHz of the acoustic field the gas nuclei can be considered 
in equilibrium at the prevailing pressure of the liquid essentially until the critical 
condition is reached. 

The sound speed c in a liquid containing gas bubbles depends on the liquid itself 
as well as on the void fraction /? of the gas bubbles. It is derived (Wijngaarden 1972) 
from 

which by differentiation gives 

where p’ and cf arc the density and sound speed in the gas-vapour phase. 
1 and for P + O ,  and accordingly 

c --f c’ and c + co,  respectively, while at intermediate p-values this term becomes 
decisive, and a minimum sound speed is obtained for P = 0.5 (Wijngaarden 1980). 
However, at transition from gaseous to vaporous cavitation which occurs, in general, 
a t  small /?-values, the above analysis is not sufficient. 

If we assume that the nuclei are of uniform radius a, and their distribution can be 
considered an ordered structure of grid constant (inter-cavity distance) 1 then 

In general, the last term in (18) vanishes for 

P = q(a/433 (19) 

in which e.g. an HCP-structure gives q = 4x4213. 

bubble structure must change to a drop structure. 
It should be noted that such a structure is possible only for u < i l ,  above which the 

With (15) we can eliminate p: and GT from (14) and the result can be written 

p-p crit . = 3 %a2 crit . (u-3-a-3 Crlt )-2r7(a4-a&), 

from which dplda = ~ u ( u - ’  -u&~~/u‘)). (21) 

From (18), (19) and (21) we obtain the dispersion equation, valid at frequencies low 
compared to the resonance frequency of the bubbles, and therefore, according to the 
above discussion, almost until a = ucrit, 

in which p’ < po is used. It appears that  even at low void fractions the influence of 
the gas bubbles becomes decisive and causes the sound speed c in the bubbly liquid 
to vanish when their radius approaches the critical value. 

In figure 2 the cavity radius a and the sound speed c are shown us. the pressure 
p - p :  for the case of a cluster of gas bubbles of critical radius acrit = 3 pm as 
considered above, and a t  an inter-cavity distance 1 = 300 pm. The sound speed of the 
bubbly medium is little or only moderately influenced by the subcritical gas bubbles 
as long as the pressure is just a few kPa above the critical limit. At pressures close 
to  the critical pressure the bubbles become decisive and the sound speed drops 
abruptly towards zero. Thus, at sufficient pressure reduction the acoustic impedance 
vanishes at the boundary of a developing cluster, where reflection of the convergent 
acoustic wave occurs as at a compliant wall, while only a vanishing part of the wave 
energy is transmitted into the cluster. In  (1)-(11)  the sound speed of the medium is 
assumed to be constant, but minor and gradual changes do not exclude their 
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FIQURE 2. The cavity radius a and the sound speed c us. pressure p-p :  for gas bubbles of critical 
radius 3 pm at an inter-cavity distance I = 300 pm in water of po = 998 kg/rn3, u = 0.0728 N/m 
and c,, = 1484 m/s. q = 4rr1/2/3. 

applicability. On the other hand, if a significant change of the local sound speed 
occurs within a distance of the order of the inter-cavity distance 1 the cluster can be 
considered to cause total reflection, and it can be dealt with as a cavitating medium. 
A boundary between minor and decisive influence of the cavities can suitably be 
defined by the cavity nucleation pressure p ,  at which c = $c0. This definition of p ,  is 
an estimate. For the case considered in figure 2 where pcrit-p: = -32.4 kPa we 
obtain p,-p: = -31.8 kPa. The disappearance of c therefore means Ac/Ap = 
co/(2(p,-pcrit)) = 1.3 m/(s*Pa) while, if W = 50 watts and the frequencyf = 20 kHz, 
(11) gives dp/dr x 1 x lo6 Pa/m, when the cluster radius obtained in the following 
paragraph is used. Accordingly, c vanishes over a distance of 600 pm z 21, 

I n  the following discussion we consider a medium containing subcritical gas 
bubbles to be a single-phase liquid for p > p ,  and a two-phase cavitating medium for 
pcrit < p < p,. With the pressure perturbation (1 1) of the acoustic field superposed on 
the equilibrium pressure pa the single-phase condition (March 1986) is therefore 

(23)  
satisfied only if 

PO+AP> Pn-P:. 

However, a t  sufficiently large acoustic power W the pressure drops below the limit 
of cavity nucleation during part of the cycle. The locus of nucleation then moves in 
a radial direction from r = 0 at t = t , (O) .  The relation between the time of cavity 
nucleation t ,  and the radius r is obtained from (11)  and (23 )  which give 

(24) -- - A cos wt,: 
kr 

sin kr 

in which 

For cavity nucleation to occur, we find from (24 )  that A > 1 is demanded. A is the 
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cavitation number of acoustic cavitation. The locus of cavit,y nucleation moves in a 
radial direction at speed v, = dr/dt, and by differentiating (24) we obtain 

v, = - Ac, sin ot, sin k r / (  1 - kr cot kr ) .  (26) 

It appears that v, --f co a t  values of r + 0, and thus, in a region r < R, around the focal 
point v, > co. Here, the wave field given by (1 1 )  may produce cavity nucleation, even 
though critical size cavities have developed already a t  a smaller radius. The 
relaxation waves they set up move outwards a t  only sonic speed in the liquid phase 
and do not catch up with the nucleation front until v, = co. This is apparent from the 
r ,  t diagram in figure 3, where the whole domain I is governed by the standing wave 
pattern set up by total reflection without phase shift at r = 0. 

The pressure changes in the liquid, resulting from the standing wave, reflect that 
the sound field exerts a force on the liquid elements. On the other hand, if the energy 
which is to be transformed from kinetic to potential energy by the sound field is 
larger than t h a t  which can actually be stored in the medium, the limit being given 
by the critical pressure pcrit, then the excess energy is not transformed and the 
boundary conditions for the converging wave change so that it i s  reflected with a 
phase shift. Due to  the spherical symmetry, cavity nucleation ( p  = p,) will occur 
simultaneously on a spherical surface which moves in a radial direction from the focal 
point. As wave energy is propagated only weakly beyond the nucleation zone and 
into this spherical volume because c vanishes here, the energy transformation 
resulting in a pressure drop below the nucleation pressure p,  takes place essentially 
within the volume by which the nucleation sphere grows in a small time interval 
considered, and therefore the cavities in the interior of the sphere grow only 

If in a first approximation we disregard this slow growth of the inner cavities, then 
the rate of work done by the sound field on the spherical volume increases the tensile 
stress solely in the nucleation zone a t  its surface. The position where critical 
conditions are first reached determines the cluster radius because here the cavities 
reach unstable equilibrium and relaxation towards the vapour pressure occurs. This 
cluster radius RA is determined from the rate of work of the sound field per unit 

slowly. 

volume - 

in which Au and Ap are given by (8) and ( 1 1 ) .  By use of (24)-(26) we obtain from the 

(27) 
above equation 

&p* = = [I +2((k~::)-1-cotkR~)2]i- 1.  
P0-Pn-P: 

In figure 4, curve a shows (ICRA) as a function of Sp*. The nucleation pressure p, is 
always reached first a t  r = 0, but as the locus of nucleation initially moves at infinite 
speed (26), the nucleation zone moves outwards too fast to  allow pressure reduction 
to the critical condition in this zone until a position r = Ri where v, has dropped. 
Thus, RA is the location where a totally compliant boundary condition for the 
converging acoustic wave develops, while inside this sphere the cavities are still 
slightly subcritical. According to this model a spherical shell of vaporous cavities 
would be formed having the radius Rh, and by relaxation the subcritical cavities in 
its interior would collapse. 

Actually, as c has not completely vanished a t  pressures between the nucleation 
pressure and the critical pressure a small amount of wave energy is propagated 
beyond the nucleation zone, and i t  causes growth towards critical size of the cavities 
also inside the nucleation sphere, while the fast growth of those at  its surface is 
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FIGURE 3. r , t  diagram for the wave propagation in the focal region during cluster formation. 
Region I;  total reflection at the focal point as at a rigid wall (equations (8) and (11) ) ;  region 11: 
cavitation zone ; region I11 : cavity nucleation zone ; region IV : total reflection at cluster boundary 
as at a compliant wall (equations (30) and (31)). 

slightly retarded. Therefore, it is to be expected that the critical condition occurs 
almost simultaneously in the whole domain, and that (27) underestimates the cluster 
radius. An alternative procedure would therefore be to calculate the radius I$ a t  
which the work of setting up the stress field according to (1 1) corresponds to that 
demanded for reducing the pressure from p, to pcrit throughout the whole nucleation 
sphere, i.e. cc ( ~ p z ) t , ( R , ,  47cr2 dr = %REbcrit -Po -P:)2, 

which with (11) and (24) gives 

6p* = (:( 1 - cos kl$ sin kBc/(kI$))/sin2 k&)i- 1. (28) 

Equation (28) is shown as curve b in figure 4 and is expected to give a more correct 
calculation of the cluster radius than curve a. This calculation fails, owing to its basis 
of integration, to give the information that the critical condition tends to develop 
first at some distance from the focal point - or, as a consequence of the weak wave 
propagation into the cavitation region, simultaneously throughout the cluster. 

For the above example with gas bubbles of critical radius acrit = 3.0 pm, 1 = 300 
pm we find 6p* x 4.5 x lod3 when p ,  = lo6 Pa and, accordingly, from (28) k& = 0.25 
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0.05 0.1 

8P* 
FIQURE 4. The dependence of the cluster radius on the differential pressure Sp*. Curve a 
corresponds to (27) in which wave propagation beyond the nucleation zone is ignored and curve b 
to (28), where such an effect is included. 

which for a 20 kHz acoustic field gives a cluster radius & x 3.0 mm. This result is 
reasonably in accordance with experimental results. 

It is evident that the definition of p ,  from c = $o influences the calculated value 
of &, but as apparent from figure 4 a different choice satisfying the argument used 
for defining p ,  would not greatly change the result. 

In general the nucleation front still moves a t  high supersonic speed at such small 
values of k& as found above (figure 3). Therefore, after cavities of critical size have 
developed a t  r = R, a t  time t = t,(&) nucleation is continued outside this surface 
because relaxation waves from cavities which have passed the critical size move 
outwards a t  only sonic speed. At r = R, the expansion wave of the convergent sound 
field is reflected as a compression wave and subsequent nucleation events a t  r > R, 
also cause such reflection. Thus, a region of relaxation is formed outside the 
cavitation region. It spreads a t  supersonic speed until r = R,, where v, = co, and here 
the relaxation wave field catches up with the nucleation front a t  time t = t,(R,) and 
excludes further cavity nucleation. For r > R, the cavitation nuclei again collapse 
into micro-gas bubbles due to the relaxation waves and the associated reduction of 
tensile stress so that the medium becomes a single-phase liquid. Only for r < R, do 
the cavities reach and exceed the critical size. This domain now constitutes a genuine 
cavitating kernel - a cavity cluster - embedded in the single-phase liquid. The 
pressure in the liquid phase of the cluster is lower than the vapour pressure and the 
cluster is in an unsteady state, its development being governed by the pressure and 
velocity field in the surrounding liquid. 

3. The growth of the cluster 
In  the liquid surrounding a cavity cluster which has just developed, the basic 

pressure is the far field pressure p ,  and the local instantaneous pressure is obtained 
by superposing the convergent acoustic wave field and the wave field due to its 



On cavity cluster formation in a focused acoustic $field 67 

reflection a t  the boundary of the cavitation region. Inside the cavitation region the 
pressure can be considered close to (unstable) equilibrium and is connected to the 
cavity size by (14) as the inertial terms of the bubble equation are small. In general, 
after relaxation from the critical pressure, the cluster pressure is not much lower than 
the vapour pressure. The two regions interact a t  the cluster/liquid interface where 
the far field pressure operates to collapse the cluster, but a t  first this effect is 
surpassed by the acoustic field causing cluster development, later both contribute to 
its collapse. 

After cluster inception by growth of the cavitation nuclei into cavities of critical 
size, continued growth leads to stress relaxation in the liquid phase of the cluster and 
new cavities cannot develop. As a consequence, the continued development of the 
cluster takes place by growth of existing supercritical cavities, and increase of its 
linear dimension beyond the radius R = 4 is due solely to displacement of the 
cavities forming the cluster boundary, thus reflecting the increase of the void fraction 
in the cluster. 

The cluster is essentially shielded from the outside pressure field during the time 
of cavity nucleation, i.e. as long as v, > co (26), and until the convergent acoustic 
wave has again advanced from r = R, to R, a t  the time t, = t,(R,) + (R,,-Rc)/co. 
In this interval of time (see figure 3), the mean void fraction in the cluster grows 
owing to relaxation spreading from the cluster boundary into the nucleation region 
4 < r < R, and the pressure p-pG-tO (through negative values) as the cavities 
grow. After time t, the convergent acoustic wave and the wave reflected from the 
cluster boundary directly govern the cluster development in conjunction with the 
far field pressure pa .  

From (12) and (16) we find that when a gas bubble grows to its critical size wB --f 
0, and beyond this limit a resonance frequency does not exist for isothermal cavities 
because restoring forces are absent. A tensile stress wave reaching the cavities 
causes cavity growth due to liquid straining, and simultaneously the equilibrium 
pressure in the liquid phase rises to a level higher than in the undisturbed state as 
from each cavity exposed to the tensile stress wave a relaxation wave spreads into 
the liquid at the speed co. At the boundary of a cluster of cavities in which the inter- 
cavity distance is 1 the tensile stress due to an incident acoustic wave of angular 
frequency o is almost immediately relaxed if co/o 9 1. The pressure increase due to 
cavity growth as derived from (14) is small and the cluster boundary can be 
considered a totally compliant interface a t  which the tensile stress wave is reflected 
with a phase shift x. We might say that the acoustic impedance a t  the cluster 
boundary is zero, but as a sound speed c inside the cluster is not defined at vaporous 
cavitation, its acoustic impedance is not defined just from the properties of the 
medium. This becomes evident in connection with compression waves. 

As at tensile stress the cluster surface constitutes a compliant boundary to the 
single-phage liquid, the boundary condition leading to (6) does not apply any more. 
It is now demanded that at r = & the pressure perturbation due to the wave field 
( A P ) ~ ,  = 0, and the convergent wave (9) is therefore reflected to give 

C 

f r  
= po-wsin(wt-kr+2kRJ, 

so that with (5), (9) and (29) 

A p  = poat(#f+#g) a = ; ( - ) l c o s ( w t + k R J s i n ( k R , - k r ) .  1 2p0wc0 
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Equation (30) gives the velocity perturbation Au and the displacement E of the fluid 
elements 

which yields 
cos (kr-kR,)-sin (kr-kR,)c , / (rw) 

rw (32) 6 = - (gr cos (wt + kRc) 

Equations (29), (30) and (32) are valid for t > t,, EE, < r < EE, + (t-t,) c, (region I V  in 
figure 3). 

From the onset of cavity nucleation until growth driven by the sound field begins 
a t  t = t ,  only a small void fraction is developed in the cavity cluster and i t  is in 
general not decisive. Therefore it may be neglected in a first approach. For t > t ,  the 
standing wave (region IV  in figure 3) causes growth of the void volume by 

A X  = 47~&3t(t)- t ( t g ) ) r = R ,  = 47~R: A t ( t ) .  (33) 

However, this increase is counteracted by the far field pressure p,, which initiatres 
a collapse of the cluster simultaneously with the acoustic field initiating growth of 
the void volume. During the first period of time the latter effect is the strongest, and, 
consequently, the cluster boundary remains a material surface, i.e. the fluid elements 
inside the cluster boundary remain the same. In  this period of time the effect of the 
far field pressure p ,  is essentially described by the Rayleigh-Plesset equation for a 
single cavity of radius as the cluster 

RR i-3' = - (p,-p)/p,, (34) 

even though the cluster is a bubbly medium. This equation gives the change of 
cluster radius AR(t) = R-R, due to the far field pressure, and a resulting total void 
volume in the cluster 

AT' = 4nR3At(t) + hR(t)), (35) 

is obtained. 
Accordingly the mean void fraction in the cluster is 

a = 3 ( 4 ( 4  + W t ) ) / % .  (361 

During the growth period the two terms in (35) do not influence each other to any 
significant extent, because the pressure a t  the cluster boundary can be considered 
almost constant and close to the vapour pressure. 

For the cluster of radius R, = 3.0 mm calculated above for a 20 kHz acoustic field 
we assume that W = 50 W, c, = 1483 m/s, p = 998 kg/m3 and with p ,  = 100 kPa, 
p,-p: = -31.8 kPa (cavitation number A x 4.4) equation (24) gives, t,(R,) x 
t , (O)  = - 10.66 ps and for wn/co = 1 equations (24) and (26) give I& = 26 mm and 
t,(R,) = - 7.0 ps which implies t, = 9.0 ps. With these data (36) gives the development 
of the mean void fraction PI shown in figure 5. The individual contributions from the 
acoustic field and the Rayleigh-Plesset collapse are also shown. It appears that the 
maximum value of x 0.013, which for 1 = 300 pm corresponds to a maximum 
cavity radius a = 39 pm, occurs 32.7 ps after cavity nucleation a t  the focal point. 
Thus, more than half the period of oscillation of the acoustic field is used for cluster 
formation and growth. 

It should be noted that if the nuclei distribution outside the cluster region differs 
from that inside the cluster region then the above calculation of t ,  is strongly 
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FIGURE 5. The development of the mean void fraction in the cluster vs. time t for the example 
considered in the text. Further, the cluster boundary displacements A f ( t )  due to the sound field, 
and hR(t) due to the far field pressure p ,  are given. 

affected. If the nuclei generated by successive cluster collapses were not at all spread 
outside the cluster region we would obtain t, = t,(&), but such a situation is unlikely 
to occur. 

4. The collapse of the cluster 
The maximum void volume in the cavity cluster is reached when growth (33) due 

to the tensile stress wave is balanced by the Rayleigh-Plesset collapse governed by 
(34). Now the actual cluster collapse is initiated and (34) ceases to be valid because 
during collapse the cluster boundary is not a material boundary. It is characteristic 
that only those cavities close to the instantaneous cluster boundary contribute to the 
collapse, and so the cluster radius R shrinks by time as cavities a t  its boundary shrink 
into gas nuclei, and liquid of the cluster region shifts into liquid of the single-phase 
region. 

The collective effects of multi-bubble collapse were first analysed by Wijngaarden 
(1964,1966), who solved the complete system of equations for the collapse of a planar 
gas bubble region when exposed to high pressure. Later, the collapse of spherical and 
cylindrical cluster configurations were considered (Hansson & Msrch 1980, Mplrch 
1980, 1982) by application of Campbell & Pitcher’s (1958) shock-wave approximation 
to the transition from the two-phase to the single-phase condition. Though strictly 
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it  is applicable only to gas bubbles, the results are valid for vaporous cavities too. 
The cluster form is of major importance owing to the energy focusing produced by 
a convex cluster shape. 

If a cavity cluster of void fraction P1 is embedded in a single-phase liquid and the 
pressure in the liquid is suddenly raised from the cluster cquilibrium value p ,  
(equation (14)) to a high level pa it  starts collapsing. The potential energy of this 
system, which is connected to the void volume of the cluster, is gradually changed, 
partly into kinetic energy of the surrounding liquid, and partly lost by dissipation or 
radiation. This gives an energy balance for the system 

which contains the three above-mentioned energy terms, and where Q, and G?, are 
the volumes of the cluster and of the surrounding liquid, respectively, u is the 
velocity of the liquid set up by the collapse of the cavities, Pz is the pressure in the 
liquid a t  the cluster boundary, while y is an energy conservation factor (0 < y < 0.5). 
At given cluster configuration, (37) leads to an equation for its collapse. 

The undisturbed interior of the cavitation zone is separated from the single-phase 
liquid by a collapse wave across which the velocity and the pressure grow as the 
cavities collapse. For a one-dimensional wave the equation of mass conservation 

gives with (17),  when p’ z 0 and (a/at) + (Ka/ax) = 0, 

du - d p  
u-v, 1-p’  (39) 

where V ,  is the speed of propagation of the collapse wave separating the cluster and 
the single-phase liquid. By integration across the wave we find 

u = v , (A-P) / (1 -P) ,  (40) 
P being the local void fraction inside the collapse wave. Behind the wave, where 
P = -6 P1 the velocity of the liquid 

u2 = v,- P1 -Pz x p1 v,. 
1-Pz 

Likewise, from the equation of motion for an inviscid fluid 

we obtain with (40) that 

Integration across the wave gives the local pressure p in the wave 

(42) 

(43) 
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With equilibrium conditions behind the wave a driving pressure p = Pz gives the 
wave meed 

as a t  vaporous cavitation P1 >> pz x 0 and p ,  x p: for cavities significantly larger 
than the critical size, (15). However, (45) also applies to gas bubbles which are 
compressed isothermally if only surface tension forces are small, thus confirming 
earlier results (Mmch 1980). 

In planar theory the thickness of the collapse wave is not important, but the 
application of this theory to the collapse of a non-planar cluster, demands that the 
wave thickness be small compared with the radius of curvature of the cluster 
boundary. Therefore, the wave profile, resulting from the collapse course of the indi- 
vidual cavities, is important. Though the cavities do not collapse spherically such 
collapse is a reasonable approximation, and it allows the Rayleigh-Plesset equation 
to be used for calculating the cavity radius a vs. time t when (44) is used to give the 
driving pressure. This relation is transformed into one of radius a us. position x in the 
wave by using a/at + V ,  a/at = 0, figure 6 (a). 

The associated pressure distribution in the wave is shown in figure 6 ( b )  (M~lrch 
1987 b) .  This result essentially agrees with Wijngaarden (1970) for gas bubbles, 
though these exhibit oscillations in the collapsed state. It is seen that a distance 

ahead of the cluster/liquid interface the cavity radius is reduced by only 1 % (a, is 
the cavity radius in the undisturbed cluster). 

For /3, = 0.02 we obtain S,~,, x 16a, and by (191, So.,, x 2.41, which shows that 
essentially only the outermost cavities participate in the collapse. It means that for 
spherical cavity clusters of initial radius R = I$, % I, one-dimensional collapse theory 
is applicable until only a small number of cavities remain and R x 21. 

For a spherical cavity cluster of radius R, inside which u = 0, p, = constant, while 

R 2  
in the surrounding liquid 

u = Uf)’ = p ,R( ; )  (47 ) 

obtained by (41), we find with (37) using dOl = 4xR2dR and dS2, = 4xr2dr, r E  [R;  a31 
that 

Po - P: BR + ($-& 1 - y )  ( 1  -p1))R2 = - ~. 
Po Pl 

For P, = 1, (48) reduces to the usual Rayleigh-Plesset equation for a single cavity, 
whereas a cluster of small P1 collapses essentially as a single cavity exposed to a far 
field pressure enhanced by the factor l/pl. The collapse is shown in figure ?(a)  for 
P1 + 1 with y = 0 A 0.5, and the corresponding pressure developments at the cluster 
boundary P2 calculated from (45) are shown in figure 7 ( b ) .  It is noticed that Pz rises 
sharply as the cluster collapses, and the last cavities collapse at  a very high pressure. 
However, as a consequence of the non-vanishing thickness of the collapse wave, Pz 
actually remains finite when R-tO. During collapse of each cavity a radial flow 
towards its centre is set up. If viscous and thermal losses are neglected and the 
collapse is spherical, the associated kinetic energy is converted and radiated as a 
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FIGURE 6. (a) The radius a of a cavity us. position x in the collapse wave. (b) The pressure 
distribution in the collapse wave (Msrch 19876). 

spherical acoustic wave. Half the energy is radiated away from the cluster and is lost, 
but the other half is radiated into the cluster and contributes to its collapse, so that 
this energy is conserved in the system, i.e. in (37), y = 0.5. In the case of a fully non- 
spherical cavity collapse in which all the radial energy is convert,ed into kinetic 
energy of the collapse jet, this energy is essentially lost by dissipation during jet 
penetration into the liquid. In this case y = 0. Actually, a shock wave is always 
radiated from each cavity a t  collapse, but thermal and viscous losses are not 
negligible, and the cavity collapses are not spherical. Therefore, 0 < y < 0.5. 

In the dissipation term given as the right-hand side of (37) $?l(Pz-p:) represents 
half the potential energy per unit of volume of the cluster a t  the instantaneous 
cluster boundary pressure Pz. The other half is inherently converted into kinetic 
energy of the liquid elements which shift from the cluster region to the single-phase 
region, their velocity changing from u = 0 to u = u2 at  collapse of the cavities. 

If we superpose an acoustic field on the pressure and velocity fields of the collapse 
driven by the far field pressure p ,  they jointly have to satisfy the cluster boundary 
conditions of fluid velocity P I R  and pressure p o p l ( l  -p1)f iZ given by (41) and (45). 
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FIGURE 7 .  ( a )  The cluster radius R vs. time t during the collapse of a spherical cavity cluster of 
initial radius R, for 8, < 1 ,  y = 0 A 0.5. (b )  The corresponding pressure P, at the cluster boundary 
vs. the cluster radius R .  

Therefore, at spherical cluster collapse the equation for the velocity of the liquid (47) 
is modified to be 

u = (/31ri-A~(R))(R/r)2,  (49) 

and the pressure driving the collapse (37 )  is 

p2-p: = PoP1(l-P1)Rz--P(R)> (50) 

in which Au(R) and Ap(R) depend on the matching conditions of the convergent 
acoustic wave to the cluster collapse wave. 

We notice from the above discussion that the wave speed V ,  adjusts itself to give 
a collapse wave pressure Pz and a velocity distribution in the wave which match a t  
its rear to the external single-phase flow. From (41) and (45) we find 

showing that though a sound speed is not defined inside the cluster a wave dependent 
acoustic impedance can be ascribed to the cluster. This dynamic impedance is smaller 
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FIGURE 8. The radius R of the cavity cluster vs. time t for the example discussed in the text. -, 
collapse calculated from (53); ----, collapse calculated for the case when the sound field is 
neglected. 

than the acoustic impedance of the liquid phase itself. Further, du, is phase locked 

A planar compressional acoustic wave being superposed on a planar collapse wave 
is therefore partially reflected as a tensile stress wave. However, in the near field 
kr < 1 of a spherically symmetrical system, there is a 4x phase displacement between 
Apg and Au,, (4) and (9), of the convergent wave (3). As the collapse wave cannot 
respond to these perturbations the wave is reflected at  r = 0 as if the cluster were not 
there, and the acoustic field is given by (8) and (11) which with Icr 4 1 leads to 

to dp,. 

Au(R) w 0, 

and 

This is equivalent to a total reflection without phase shift a t  the cluster boundary. 
We now apply (52) to (49) and (50). The pressure increase at  the cluster boundary 

due to the sound field is superposed on the effects of the far field pressure po  and is 
balanced by the transient collapse, and from (37) we obtain 

Thus, the effect of the sound field on the cluster collapse is equivalent to an increase 
of the far field pressure by i( 1 - y )  Ap(R), in which Ap(R) is obtained from (1  1). For 
the numerical example considered in $52 and 3, (53) gives a collapse time of 19 ps 
(figure 8). With 32.7 ps for cluster inception and growth the complete cycle demands 
slightly more than one period of oscillation of the 20kHz acoustic field. The 
numerical results seem quite satisfactory, but it should be borne in mind that the 
data used for the calculation, especially concerning the cavitation nuclei and their 
distribution, are very approximative. Therefore, a detailed quantitative evaluation 
of the theoretical model is not justified. 
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5. Discussion 
This paper discusses why a cluster of small cavities is formed in an acoustic 

cavitation process instead of just a single large cavity, how the cluster develops and 
how it collapses a t  the joint exposure to the acoustic field and the far field pressure. 
A cavitation number for the acoustic field is obtained. Further, it is found that a 
cavity cluster exhibits a dynamic acoustic impedance, which is connected to the 
bubble dynamics. Data for quantitative calculation of a cavitation cycle are chosen 
from the experimental evidence available in the literature. These calculations lead to 
plausible results concerning the cluster size, the maximum void fraction in the cluster 
and the duration of different parts of the cluster life cycle. However, experimental 
work carried out at controlled conditions, especially with respect to  the cavitation 
nuclei and their distribution, is lacking. The few series of high-speed photographs of 
cavity cluster life cycles that exist are sparsely supplied with information concerning 
the acoustic field as well as the liquid. 

It is supposed in the present paper that  the number density and size of the gaseous 
cavitation nuclei reach an equilibrium during continuous operation of the acoustic 
field. The first stress wave may cause a single solid or gaseous cavitation nucleus near 
the focal point to grow into a large cavity into which gas diffuses during its lifetime. 
At collapse it may split into two or more viable gas nuclei that grow in the next cycle 
to smaller maximum sizes than the first one, and so the gas diffusion into each of 
them is reduced. Accordingly, the tendency to splitting into an increased number of 
viable nuclei decreases when the number of nuclei increases as a result of successive 
stress waves. Therefore, at given gas content and temperature of the liquid a 
continuous acoustic field is expected to lead to a balance of the number density of 
cavitation nuclei. Due to acoustic streaming and to spatial instability of the cluster 
collapse process it is conjectured that the nuclei generated in the cavitation process 
spread into the surrounding liquid, and survive so that an approximately uniform 
dynamic tensile strength of the liquid can be assumed. 

A better knowledge of the above conditions of cluster formation is primary to more 
reliable calculations of the cluster life cycle, but also the approximations made in this 
paper concerning the conditions of wave reflection a t  the cluster boundary, 
particularly during cluster growth, and the transition to the collapse phase, should 
be considered in further depth. 

The author would like to thank the referees for valuable questions and 
recommendations included in the final manuscript. 
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